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Abstract-In the paper a class of microwave circuits described
by a two-dimensional vector wave equation is defined. It is /////////,//
proposed to refer to them as vector two-dimensional or 2-DV //,//,///,//,// ///,//////,
circuits to distinguish them from circuits described by a two-

///,/////////// /,//,///,
/ ////////////,/ //////

dimensional scalar wave equation (typically referred to as 2-D
/ ////////,,/,/ //,/,

/ //////////,,, ,/, /
circuits). It is shown that the 2-DV class contains some types oh / ////////,,,,, ,/,

/ ///////////,/ ,/,
planar circuits filled with anizotropic medium, two-dimensional / ////////////,/ ,,,/ ///,,/,///,,, /,///
waveguide discontinuities and circular waveguide discontinu-

, ///////////// // ///,,

ities. Calculation of dispersion characteristics of inhomogeneously
// //,/,/

filled hollow waveguides is an eigenvalue problem belonging to
the 2-DV class. Application of the finite-difference time-domain
(FD-TD) method to the analysis of 2-DV circuits is described. The
efficiency of this method is shown by means of several examples

x

of various kinds of circuits Fig. 1. A pkmar circuit.

I. INTRODUCTION

R
ECENTLY, full-wave three-dimensional time-domain
methods found big interest [1]–[3]. However, a variety

of practically used waveguide discontinuities can be described
by a two-dimensional wave equation. For these circuits
obviously, two-dimensional calculations take much less time
than three-dimensional. Assuming that the solution in one of

the three directions is exact, the two-dimensional analysis
using particular (and always limited) computer resources

produces more accurate results. Usually in 2-D methods
modeling of matched ports, as well as curved boundaries is
more straightforward.

A class of circuits described by the scalar wave equation
has been thoroughly investigated [4]–[1 1]. In this paper we
further distinguish a class of circuits described by the two-
dimensional vector (2-DV) wave equation. This class contains

some types ofi planar circuits filled with anizotropic medium,
two-dimensional waveguide discontinuities and circular wave-
guide discontinuities. Calculation of dispersion characteristics

of the inhomogeneously filled hollow waveguides is an eigen-
vahte problem belonging to the 2-DV class. Many of these

circuits have been analyzed before (see e.g. [12], [13]) but
the fact that they belong to the same category has not been
stressed. The formal distinguishing of the class of 2-DV
circuits should help in extension of applications of the methods
proved useful in the analysis of some circuits belonging to the
same class.

Manuscript received Dec. 30, 1991; revised May 18, 1992.
The authors are with Warsaw University of Technology, Faculty of Electron-

ics, Institute of Electronics, Nowowiejska 15/19, 00-665 Warszawa, Poland.
IEEE Log Number 9204489.

In the paper we formulate basic equations describing 2-
DV problems and define categories of circuits to which these
equations can be applied. We also show how an algorithm
written for solving scalar 2-D circuits can be efficiently used
for solution of 2-DV circuits. Results of several exemplary
calculations are also presented.

II. TWO-DIMENSIONALVECTOR CIRCUITS

In a previous paper [5] a general theory of two-dimensional

scalar circuits was presented. The two-dimensional FD-TD
implementation and its application to different classes of
circuits were also described in [5]–[8]. We will refer to notions
and definitions used in [5].

Consider a planar circuit in the sense of [4], [5]. The circuit
is bounded by two planes: z = O and z = h (Fig. 1). The
medium filling the circuit is homogeneous along the z-axis

and is described by diagonal tensors:

[1

P’. o 0
A~,Y)= Opyo;

o 0 p,

[1

CJOO
E(z, y)= o Cu o . (1)

o 0 e,

Evolving upon general properties of the Hertzian potentials
it was proposed in [5] to develop the fields in the so defined
planar circuit into a series of height modes En, lf~. Far a
nth mode, all field components are proportional either to
cos (fl,~.z) or sin ((3,~), where /?,~ = nn/h.

A scalar 2-D algorithm [5] can be applied to a planar circuit
with a single En or lln mode. However, if the medium filling
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the circuit is inhomogeneous in the (z, Y) plane, then a single
E. or If. mode (other then -EO) cannot propagate [14]. We
must consider a combined EHn or HEn mode with all six
field components. From now on we will refer to a planar
circuit supporting a combined EHn or HE. mode as a vector
two-dimensional circuit (2-DV).

We consider propagation of a single height mode EHn (dual

analysis leads to the solution for the HEn mode). In this case

the dependence of all six field components on the z-coordinate
is known:

~Z = E. sin (@znZ), ~v = Ev sin ((?znz),

& = E: COS (~~=nz) , (2)

and

Hz = H. Cos (p,nz), Hy = Hg cm (D.nz),

HZ = H: sin (/3s.2), (3)

For coherence with the previous paper [5], let us define electric

and magnetic currents and potentials:

J = –z: X Ht[2=h = –z, X (z.H. + ZYHY);

V = –hEz (4)

Jh = i, X ~t[,=h/(2n) = –i,, x (i&z. + igEg):

Vh = –hHz, (5)

where iz, iv, iz are unit vectors along axis z, y, z respectively,
z is the distinguished axis of the circuit,

Et, Ht are the field components tangential to the plane z
= const,

E., Ev, Ez, Hz, Hv, Hz are amplitudes as defined by (2)
and (3).

Considering a vector two-dimensional assumptions the
Maxwell’s equations (6), (7):

~xH=,@
—

at
(6)

vx~=–pg (7)

are equivalent to the following four equations using the defined
notions (4) and (5):

VtV – /3’(z=x Jh) = –L~

(8)

(9)

where:

[1
C=%; L=hp’ 0 ;

o WV
(12)

[1
ch=@-” Lh= he’ O

h’ (1 &y
(13)

@ = n7r. (14)

Solving the set of equations (8)–( 11) with proper boundary
conditions is equivalent to solving any of the practical prob-
lems of microwave engineering belonging to the following
classes:

(a) characterization of E-plane discontinuities in rectan-
gular waveguides filled with medium inhomogeneous in the
E-plane;

(b) characterization of planar circuits filled with aniso-

tropic medium (described by diagonal tensors of e and p);

(c) characterization of inhomogeneously filled circular
waveguide discontinuities, maintaining axial symmetry of
boundary conditions and excited by not axially symmetrical
modes;

(d) finding propagation constants and field distributions
of the modes in hollow waveguides of arbitra~ shapes and of
inhomogeneously filled cross sections.

Although, application of (8)–( 11) to the classes a and b is
straightforward, the classes c and d need further comments.

III. AXIALLY SYMMETRICALCIRCUITS

As it was previously pointed out [6] the circuits maintaining
axial symmetry of boundary conditions and excited by fields
of axial symmetry can be treated as inhomogeneously filled
scalar 2-D circuits. Let us now abandon the assumption about
the axial symmetry of excitation. We assume that an axially
symmetrical circuit is filled with medium characterized by

V’(P, Y) and ~’(P, y) —Fig. 2(a). The circuit is excited by
one mode in which all the fields depend on the angle #
proportionally to sin(rz+) or cos(n~), where n is the mode
number. We have introduced here the cylindrical coordinates
in the unconventional order (p, y, ~) to get results compatible
with the planar circuit model. Defining:

J = –id X Htl,+o; V = –pEd (15)

Vh = –pHd (16)Jh = id X &l@=m/(zn) ;

where H+ and Ed are normal to the plane @ = const)
we obtain equations identical with (8)–( 11) but with the
following meaning of the parameters and operators:

Vt is a two-dimensional operator in (p, y) coordinates,
the role of i. is played by id,

/3’= n; C = e’jp; Ch = ,u’/p (17)

‘+$’PU;“=[’$$] ’18)

It means that we can analyze a circuit of axial symmetry
as a planar circuit (see Fig. 2) filled with inhomogeneous

anizotropic medium described by (17) and (18). This analogy
opens a vast area of applications for which the FD-TD
method has not been used up to now. We can analyze various
discontinuities of cylindrical waveguides. Our preliminary
investigation shows also that the presented approach can
lead to powerful tools of numerical analysis of waveguide
antennas of axial symmetry [15], including radiating horns
with dielectric inserts.
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IV. EIGENVALUEPROBLEMSFOR HOLLOW WAVEGUIDES

Let us imagine a hollow waveguide (Fig. 3(a)) with the

electromagnetic wave propagating in it with a propagation

constant /?.. Let us cut a part of the waveguide of length
1 = A/2 and bound it with two electric walls at both ends.
After such manipulation we obtain a resonator satisfying the
vector two-dimensional assumption. Electromagnetic field in

:313

meshes

(a) (b)

Fig. 3. A section of a hollow waveguide and its two-dimensional repressn.
tation.

this resonator can be described by the equations of the EH1
mode. The resonant frequencies of the resonator we equal
to the eigenfrequencies of the waveguide. Computing the
resonant frequencies for different values of /?Z we can obtain
the dispersion characteristics of all modes propagating in the
waveguide. However, it should be noted that the method does
not distinguish complex modes having the same ~Z.

V. NUMERICAL SOLUTION

For solution of (8)–( 11) we apply the finite-difference time-

domain algorithm. Using the central finite-difference scheme

equations (8)–( 11) are discretized below (see Fig. 4): whtire
a = Ax = Ay is a step of the space discretization and after
(12) and (13):

(At V(z + a/2, y, t) – V(Z – a/2, y, t)
Jz(z, g,t + At/2) = cl.(c) Y,t – At/2) – ~

)
– /3’J;($)Y, o ; (19)

z a

(At V(Z i- a/2, y + a,t) – v~z + a/2, Y, t)
Jy(x + a/2, y + a/2)t + At/2) = JY(x + a/2, y + a/2, t – At/2) – ~

Y a

)

(2!0)– @’J~(z + a/2, y + a/2, t) ;

(

At J:(z + a/2, y + a/2, t) – J~(z – a/2, y + a/2, t)
V~(x, y i- a/2, t + At/2) = Vh(z,~ + a/2, t – At/2) – ~

a

J;(c, y + a,t) – Jj(z, y,t)
+

);

(21)
a

(

At Jz(x + a, y,t + At/2) - J&(z, y,t + At/2)
V(z + a/2, y,if+ At) = V(Z + a/2, y,t) – ~

a

+ J,(Z + a/2, y + a/2, t+ At/2) – Jg(z + a/2, y – a/2, t + At/2) ;

)
(22)

a

(At Vh(z + a, y + a/2, t+ At/2) – Vh(z, g + a/2, t + At/2).—
Jk(x + a/2, y + a/2, t+ At) = J:(z + a/2, y+ a/2, t) – ~z a

)–/3’Jy(x +a/2, g+a/2, t+At/2) ; (23)

(At Vh(x, y + a/2, t + At/2) - Vh(x, y – a/2, t + At/2)
J:(z, y,t+ At) = J$(ILY, ~) – q

a

)-/?’Jz(x, y,t + At/2) ; (24)
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Fig. 4. A fragment of the grid used in the 2-DVFT-TD calculations.

Equations (19)–(24), shown on the previous page, are the
kernel of the 2-DV FD-TD algorithm. The accuracy and
efficiency of this algorithm are further improved by intro-
ducing so-called modified meshes to modeling arbitrarily
shaped boundaries [6], [7] and media interfaces. The theory
of modified meshes will be presented in a separate paper.
In the existing software for the analysis of arbitrarily shaped
scalar 2-D circuits by the FD-TD method a great programming

effort has been put to calculate the coefficients C and L
for the modified meshes. Thus, it was important to find a

correspondence between the scalar 2-D and the 2-DV software
for optimal application of existing numerical tools.

Correspondence of the ScalcJr 2-D and 2-DV Sof2wure

The form of equations (8)–(11) has the advantage of ex-
hibiting direct correspondence to the scalar wave equations

[5]:

y7t.J=_c. g; (25)

(26)

Equations (9) and (11) are modified with respect to (26)
by a term describing the coupling between them. The pair
of equations (8)–(9) is identical to the pair ( 10)–( 11) trans-
formed according to duality relations, This observation is
important from the practical point of view. It follows from
the form of (8)–( 11) that the same software tools (after minor
modifications) can be used to calculate the coefficients C’,L,
and L’h, Lh of 2-DV circuits. The modification consists of
introducing two grids of meshes shifted by half of a mesh
in x and y directions, as presented in Fig. 5. For calculation
of Ch and Lh dual medium parameters should be taken (~

C’ = CAX2
@= chAx2
A x - size of a regular mesh

Fig. 5. A model of a 2-DV circuit composed of two coupled 2-D models.

instead p and vice versa) and dual boundary condition (open
exchanged with short). The two grids are coupled according
to (9) and (11).

From the physical viewpoint, in different classes of circuits

the coupling factor ,@ depends on:

in the classes a and b—on the cutoff frequency of the mode

propagating in the planar structure,

in the class c—on the mode number n characterizing the
dependence of fields on the angle coordinate r#I,
in the class d-on the propagation constant f?= along the
waveguide.

Circuits Axially Symmetrical

With definitions (17) and (18) we use (19)–(24) to simulate

wave propagation in circuits of the class c. We can rewrite

(24) in the cylindrical coordinates shown in (27) at the bottom

of the page.
Boundary conditions at the axis are: JP(p = O) = O, .l~(p =

O) = O. The other values at the axis can differ from O, in

particular J,(P = O) # O. Since at the axis Lv(p = O) = O
and Vh (p = O) = O (see (16), (18) and Fig. 4) we can not
apply directly (27). Instead, at the axis we calculate J$ (p = O)
from (28), which is shown at the bottom of the page.

VI. EXAMPLES

The FD-TD method in the form described in [5] and [7]

and modified according to (8)–( 11) was used by the authors to

calculate several examples belonging to all the classes marked
a..d. In the cases where comparative data were available very
good agreement was reached. We will present here three
examples.

Example 1

As an example of a problem of the class a we present

a dielectric post situated in the E-plane of a rectangular
waveguide (Fig. 6). The results of calculations by the FD-

TD method in the form presented above are compared in
Fig. 7 with the results obtained by the finite element method
presented in [16].

(At Vh(p, y + a/2, t + At/2) – Vh(p, y – a/2, t + At/2)
J:(p, y,t+At) = Jj(p, y,t) - ~

)
- ~’Jp(p, ~, t + At/2) . (27)

Y CL
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Fig. 6. A dielectric post in a rectangular waveguide analyzed in Example 1,
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Fig. 7. Results of analysis of the circuit from Fig. 6 for d = ().-lb (a)
Continuous line—the present method, (b) Points—finite element method [16]

As it was shown in [7], to perform the FD-TD calculations
efficiently we have to simulate the pulse excitation of the
circuit. Since input impedance of the rectangular waveguide
is frequency dependent, a model of a port should ensure good

matching in a broad frequency band. Assuming that at the

port plane only the fundamental mode exists we simulate

a matched load by a one-dimensional model of a lossy
waveguide [8].

Example 2

Let us consider an inhomogeneously filled resonator of axial
symmetry (Fig. 8). In the resonator we assume b = h and
c1= H, and we modify the filling factor p = b/d. The results
of calculations of normalized resonant frequencies for several
modes, assuming different values of p are compared in Table I
with the results obtained by Krupka [17] by the mode matching

method. In the FD-TD calculations a grid of 40 x 40 meshes

TABLE I
EIGENFREQOENCIESOFTHERESONATOROF FIG. 8 FD-TD DENOTES
CALCULATIONBY THEPRESENTMETHOD,MM RESULTSAFTER [17]

OBTAINEDBY THEMODE MATCHINGMETHOD(THE TABLE CONTAINS
FREQUENCIES f‘ NORMALIZEDIN SUCHA WAY THAT:f‘ = b@2 ~ f /c)

FD-TD MM FD-TD MM FD-TD MM

Fig. 8. A shape of the axially symmetrical resonator considered m Example
2.

was used. This example is treated as an accuracy test before
designing a resonator of a really complicated shape and filling
which is planned to be used as a part of a cyclotron.

Example 3

The dispersion characteristics of the modes in various image
waveguides have been calculated. This is a problem of the

class d mentioned above.
The results of our calculations are compared with those

published by Strube and Arndt [18] and very good agreement
is obtained (Figs. 9 and 10). The advantage of our approach is
its great flexibility in the calculation of complicated profiles.
Its disadvantage (in the present state), as it was mentioned

before, is inability to analyze complex modes which in some
cases appear in inhomogeneously filled guiding structures.

(At HO(O,y + a/2, t + At/2) – Hd(O, y – a/2, t+ At/2) ;
Jj(o, y,t+At) =J$(o, y,t)–7

a )
(!8)

where

HO(O,y + a/2, t + At/2) = HO(O,y + a/2, t - At/2)

-(

At 2Jj(a/2, y + a/2, t) + J$(O, y + a,t) – J}(O, y,t)
—

)
; (29)

P’ a a
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Fig. 9. A section of an inhomogeneously filled waveguide analyzed in
Example 3.
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Fig. 10. Results of calculations in Example 3 with comparison to
Strube-Amdt [18],
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VII. CONCLUSIONS

We have presented a class of microwave circuits, which can
be described by the two-dimensional vector wave equation.
This class includes some planar circuits filled with inhomoge-
neous or anisotropic medium, as well as circular waveguide
discontinuities which can be analyzed using a planar model.
We can also assign to this class the problem of finding the
modes in inhomogeneously filled waveguides. We have shown

that all these circuits can be analyzed by the FD-TD method
and in the analysis the method retains all its advantages
previously shown in application to scalar 2-D circuits. When
we already have a computer program for analyzing arbitrarily
shaped scalar 2-D circuits, the paper shows how to modify it
with relatively small programming effort to obtain a program

analyzing vector 2-D circuits,
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